
Shared Storage Clusters

James Bottomley
SteelEye Technology

Introduction to High Availability using commodity
shared storage hardware

This talk gives an alternative perspective on High Availability (HA) to the approach
taken by the Linux−HA group.There are conventionally two approaches to
Implementing HA: Entire system in software (the Linux−HA approach) or entire
system in hardware (e.g. the AT&T 3B20)

Shared storage clustering is a marriage of the two approaches.Through judicious choice
of commodity hardware, several of the morechallenging problems inherent in a
software only HA solution may befinessed (that is, they a rendered non−existent by
the correcthardware configuration). At the same time, shared storage
clusteringprovides the flexibility and low total cost of ownership expected froma
software based solution.

This talk will discuss the following topics:
� Problems which may be finessed by shared storage: cluster partitioning and

membership, reduced storage requirements, lock management, volume replication
strategies and transaction losses, N down to 1 failure, Write intensive application
(e.g. E−Commerce).

� Problems introduced by shared storage: File System repair after failure (specifically
the need for a Journalling FS), cluster must be co−located (maximum separation is
2km using a SAN).

� Problems specific to the Linux implementation of shared storage clusters: Multi−
initiator SCSI and SCSI reservation handling in the Linux kernel. IP switchover
without MAC address changing.

� Integrating the Linux−HA meta−clusters approach to enable geographic dispersion
of shared storage clusters for disaster recovery.

The Types of High Availability

� Fully Hardware Based − Fully redundant
machines (AT&T 3B20) or special Cluster
Hardware.

� Fully Software Based − Clustering (Linux−
HA project)

� Hybrid − Shared Storage Clusters, build from
commodity Hardware, supply clustering
software

Fully hardware based is too expensive for small commercial installations to use −
special hardware coupled with low volumes makes them ~10x more expensive than
commodity. No interoperability standard=>all components from one vendor=>
drives prices way up. This is a well understood approach, high cost and special
drivers make it unviable in the low cost linux world.

Fully software is a nice approach, making clusters wholly commodity based but pays a
price in terms of data protection (discuss later)

Hybrid tries to build a hardware cluster from Commodity components. This adds
slightly to the cost but is still far cheaper than the Fully Hardware approach. Using
commodity HW means cluster can be built from components supplied by competing
vendors (competition drives prices down)

Software Only Cluster

WAN/LAN

Typical configuration of a software only cluster: Individual nodes connected by a
network, using replicators to mirror the individual disc devices. This (by design)
looks exactly like just a bunch of computers connected to a net, except that they
have connection redundancy.

Fully Software Clusters

� Advantages:
� Cheap

� Easy to disperse Geographically

� Disadvantages:
� Data concurrency

� Fault detection and recovery usually Quorum
Based

Fully software clusters usually have to have some type of network replicator. This
gives geographic dispersion ability over WAN − great advantage for disaster
recovery.

Replicators mean data on primary is always slightly out of date with respect to
secondary (depends on Bandwidth and latency of network). Special steps must be
taken to preserve transaction integrity. Network prone to outages=>special steps
taken to avoid complete replay

Entirely network communication based=>Fault detection and recoveryhard. Usually
done by a quorum mechanism (each node has a vote > 50% votes form cluster) =>
can only recover if > 50% of cluster survives (can mitigate using tie breakers like
Quorum Disc).

Shared Storage Clusters

Array

Storage Interconnect

Network

Storage interconnect shows redundancy. Network interconnect may be redundant.
Cluster may also export services to the WAN cloud

Shared Storage Clusters

� Advantages:
� No replication: Data is instantly transferrable

between nodes, no transaction loss.

� All nodes see storage: Cascading protection is
much easier

� Not quorum based (down one failure)

� Disadvantages:
� Shared storage costs more

� Clusters are more complex (learning barrier)

Instant accessibility of the data is because on a failure, any connected node may
instantly pick up the exact state of the data belonging to the crashed node and repair
it. For databases this means there is no transaction loss. Shared storage clusters are
ideal for applications with a high write throughput (e.g. electronic commerce)

Recovery is one of the most vulnerable times in a cluster because recovery procedures
usually place great resource pressure on the system performing it. A cascade is
where and individual (usually one among many) application may fail during the
restore phase because of resource pressure. The alternatives are to re−schedule the
restore for a later time when others have completed (the serial approach) or to
restore the application on a different system immediately (the cascade approach).
Any cluster which implements parallel recovery must employ one of these
procedures,

The costs of shared storage clusters are related to the sorage array and the necessity for
redundancy in the array connections

Complexity is severe for shared SCSI (unique ID’s etc) but should lessen for SAN
technology (every SAN is a huge shared SCSI installation).

Protecting the Shared Storage

� All nodes see the storage, so need to ensure
protected access
� Use reservations to guarantee this

� Operating System must respect reservations

� All nodes must be able to access storage −
needs multi−initiator environment

� Reservations may be dropped for a variety of
reasons, holding node must reassert if dropped

� The above are all problems in Linux.

Each array can be partitioned into many (up to 64) Logical Units (or LUNs).
Reservations may be held separately on each LUN => different nodes may own
different LUNs. This allows symmetric activity in the cluster.

Storage Ownership

� Need to assign exclusive ownership of
storage
� Do this at the LUN level using SCSI reservations

� Need to break reservations held by failed
nodes (support for bus/device/LUN resets)

� Need to detect reservation stealing (prevent
"Split Brain" clusters

Reservations are tricky things to maintain. SCSI 2 mandates that storage drop them on
bus/device/LUN reset. This means that on error recovery by any node they must be
restored (bus reset drops reservations on entire bus, device reset drops reservations
for all LUNs on an array, LUN reset is SCSI 3 and not well supported). Need to re−
assert reservations as soon as loss is detected => either as part of unit attention
negotiation or pro−actively on bus reset detection.

Failed reservation breaking can only be done by issuing a reset from user level. Linux
has no support for this (although RedHat 2.2.16−3 does support this feature via the
SCSI generic device).

"Split Brain" occurs when all communication paths fail but the nodes are still connected
to the storage=>they all try to acquire ownership and busily try to break each other’s
reservations. Finally there is one winner and all the others detect that their
reservations have been pre−empted and relinquish ownership. Can mitigate problem
by providing multiple redundant communication paths, or by doing communication
over the SCSI bus (e.g. target mode or IP over Fibre).

Linux and Reservations

� Linux treats reservation conflict as an error
� Error retries reset the bus, thus breaking the

reservation

� Can use SCSI generic interface to issue
commands (but not messages)
� No way to issue any form of reset message to

break the reservation

� Can patch kernel for above and implement
reservation handling at user level

The required patch is already in RedHat kernel 2.2.16−3. With this patch, a user level
daemon can be constructed to "watch" the storage. Periodically it issues a
reservation request for all storage that is supposed to be reserved. If the reservation
was dropped, this re−acquires it. If the reservation has been stolen, the daemon gets
a RESERVATION_CONFLICT return and can act accordingly (either quietly take
the hierarchy out of service or more drastically panic the node).

Linux Buffer Cache Problems

� The buffer cache does not purge buffers on
unmount
� If a volume transfers between nodes and back, a

remount may not see the changes because of
stale buffer information

� Must manually purge buffers via ioctl on
unmount

� Partition table may be inaccessible at boot
� Need an ioctl to re−read the partition table

before mounting the drive.

The ioctl to purge the buffer cache is BLKFLSBUF. This must be issued on an unmount
of any protected filesystem.

The partition table may not be read at boot time because a reservation was held on the
storage. If you attempt to access a partition of a device whose partition table is
unknown, linux will not attempt to read the partition table again, it will merely
return a not configured error. Before accessing a partition you must issue a
BLKRRPART ioctl to force a re−read of the partition table.

Shared Storage Hardware

� Interconnect
� Shared SCSI (68 pin cables), 12m max length

� Fibre Channel (several wiring types) up to 2km
max length

� Should be redundant

� Array
� Redundancy: RAID level >=1

� RAID must be internal (not host based)

RAID state must be stored inside the array (Otherwise it cannot properly be shared
among all the nodes in the cluster). Host based RAID does not work in a shared
storage environment (except under very limited conditions and with host co−
operation).

Shared SCSI

� Old technology (about 8 years)
� Bus is a matched impedance circuit

� Needs correct termination

� More devices more problems (any device failure
usually sinks the entire bus)

� Devices must be "daisy chained"
� No known Host Adapter supports this

� Any interconnect failure kills the entire bus

� Devices must have unique identifier

Technique is easy. Usually viewed as esoteric not because of difficulty but because few
people actually consider doing this. Therefore, there is a huge learning curve to
setting up a shared storage cluster with shared SCSI.

Problems can be mitigated by using a storage device with many many busses (e.g. EMC
Symmetrix) so that each node is connected to storage by a point to point connection
(provides fault isolation and lessens impedance matching problems)

Point to point configurations have specific problems with SCSI 2 reservations and
cannot be supported (yet) in linux.

Fibre Channel

� New Technology
� Bus is wired like a network

� Requires a Hub or Fabric Switch

� Hub provides segment isolation (bad devices
don’t drag entire bus down)

� Network status lights make for easy fault
isolation.

� Soft loop ID gets around unique device
number

Wiring is simple and lightweight (Fibre is best − 2 tiny cables per node) but copper is
not much worse (greatly reduced length limitation though).

Fault isolation and detection is a breeze with the hub/card lights. That having been said
we did run into some early teething troubles where adding bad cards to the loop
caused all other devices to drop off. The fault detection lights didn’t mark the cards
as bad and they had to be manually found by more traditional techniques.

Soft loop ID means that any initiator joining the SAN negotiates for an unoccupied
Fibre ID before becoming fully logged in.

Path Redundancy

� To avoid single point of failure need multiple
paths to storage
� This requires advanced kernel support (path

switchover or load balancing)

� Problems with reservation breaking: resets
don’t propagate across a split bus
� Use SCSI 3 reservations, or

� SCSI 3 mandate for bus device resets

No Linux support at all for this.
Could modify a software RAID driver to support this (it is, after all a type of RAID

which says "pick a path, if error pick another"), or use a hardware solution like the
Vortex FC card which implements a dual FC port with internal (and invisible) path
switchover

SCSI 3 reservations are prersistent across resets (and power fails if the storage supports
this). They are also accessed using a key rather than the initiator number so are path
independent−−−Ideal solution.

The down side is that SCSI−3 reservations are complex => array vendors don’t like
them. Therefore, use the "get out" clause in SCSI 3: All devices should drop
reservations on receiving a device reset on any port (note not a bus reset, just a
device reset). Therefore a device reset may be used to break reservations.

Unfortunately, in linux at the moment the reset choice is a recommendation to the host
adapter which usually ends up choosing a bus reset.

Storage Mapping

� Need to map storage between nodes
� Must find out that /dev/sdc on node 1 is /dev/sdf

on node 2

� Can’t use partition labels (can’t read partition
table if reservation is held)

� Use device help
� World Wide Name (inquiry page 0x83)

� Serial Number (inquiry page 0x80)

This mapping is required ahead of time so that the cluster knows exactly what to do on
a failure.

The World Wide name is guaranteed (by the SCSI−3 standard) to be independent of the
path taken to get to the storage. However, not many arrays implement this so fall
back on the Serial Number if they don’t. Note the serial number identifies the array
not the LUN (solve by tacking on LUN number) and may be path dependent.

The final wrinkle in linux is that the device names may not be the same across reboots
(add/remove device causes /dev/sd{x} to shuffle) => always make sure storage
device is known by its identifier mapping, not by its device name.

Other Linux Shared Storage
Issues

� Shared SCSI
� Only 8 LUN support

� Mid Layer crafted for single initiator only

� No target mode

� Fibre Channel
� Driven by SCSI subsystem so exactly the same

issues, except more acute

� 16 Device maximum

This addresses kernel issues in 2.2
Issues still exist in 2.4
This is a problem for shared SCSI, but this may be dismissed as a niche market.

However, SAN looks exactly like a much larger shared SCSI cluster, therefore these
problems will be a killer for SAN support, particularly as it is driven by exactly the
same SCSI layer.

More than 8 LUN support can be added by making some of the static tables in the SCSI
subsystem linked lists and allowing the low layer max_lun field to dictate instead of
a compile time limit.

Can alter current mid layer to be more reset friendly−−−implement backoff delay on
reset reciept to prevent reset storms etc.

Target mode a problem. Each low layer driver would need to be enhanced to allow it to
respond as a target (this is not a minor undertaking). Probably allow low layer to
advertise support via the interface.

Solve the 16 device limit on a FC driver using the channel number.

Cluster Operation

� Recover identical resources (e.g.
FileSystems, IP etc. and rely on application
to recover and restart).

� Cluster must agree on node to perform
recovery

� Application must be able make itself sane
and continue where it left off.

Present an overview of the well known operation mechanism for all clusters: Cluster
recovers resources, application is expected to restore its own state. Good cluster
software also throws a protection harness around the application (see later).

Protection Hierarchy

DatabaseIP Address

File System

Disc

Web Server

A protection hierarchy: The arrows represent the relationship "Is required for me to
function", so the webserver requires both an IP address and the database, the
database requires a filesystem etc.

The hierarchy restores itself by beginning at the lowest dependency and working
upwards.

Data Recovery

� Same problem as block replication: must
recover filesystem fast
� Could finesse by bypassing FS (raw devices)

� Mitigate delay by using Journalling FS

� Better than replication: recovering node sees
same data as failed node
� No committed transaction loss

� Ideal for write intensive applications

Both shared and non−shared storage clusters have the same issues with data recovery as
far as the FS repair goes. (This actually depends on the replicator: usually block
based, but could be FS or even SQL based).

Shared storage guarantees no committed transaction loss. For databases, and hence
electronic commerce shopping cart and B to B applications, this is a huge win.

Cluster Partitioning

� Partition model is Resource Driven
� No Need for Quorum: Disc resource is

arbitrator
� Only resource with access to disc may recover

� Partitoned cluster is fine (even desirable)

� Problems when comms lost but all nodes see
storage (solve by target mode or IP over FC)

In the VAX clusters model, each node has a vote, a cluster may not form without more
than 50% of the available votes. This model is wasteful (in a 4 node single vote
cluster, at least 3 nodes must be up to satisfy the condition). May mitigate this by
varying the number of votes given to individual nodes or by using additional tie
breakers (the quorum disc).

Shared storace cluster is resource driven: Any node is eligible to bring any hierarchy
into service providing it can ensure exclusive access to all the resources.

The shared storage resource is usually the gate for this: Unless a node has access to the
disc over the SAN ring, it cannot bring the resource into service and is not therefore
eligible to recover the hierarchy. Therefore, only nodes capable of recovering the
resource participate in the cluster.

Partitioning is legitimat: may occur with two or more arrays: if partition of SAN splits
the arrays, one side will recover the hierarchies on array 1 and the other side will
reccovery hierarchies on array 2. This is a fully functional and legitimate
partitioned cluster.

Cluster Partition Illustration

Array 1

Node 1

Node 2 Node 3

Node 4

Array 2

App 1

Array 1

App 2

Array 2

App 4

Array 1

App 5

Array 2

App 3

Array 1

Five applications active on four nodes. Each application is attached either to array 1 or
to array 2.

Cluster Partition Illustration

Array 1

Node 1

Node 2 Node 3

Node 4

Array 2

App 1

Array 1

App 4

Array 1

App 3

Array 1

App 2

Array 2

App 5

Array 2

Five applications are still active on four nodes but now the applications have rearranged
themselves to take the accessibility of the arrays into account.

Recoverability in this situation is governed by the hierarchy composition−−−could
easily have created an unrecoverable hierarchy (one that needed both array 1 and
array 2 for instance).

Can also encode requirements rules for other resources (e.g. IP address must be able to
ping the WAN router).

Protecting Applications

� Assume application can recover from crash
� Provide resources and application will recover

itself correctly

� Enhance protection by monitoring
� Monitor based on services performed by

application, select a given table from a
database, request a known page from a
webserver.

� Try to move protection boundary into
application

The protection boundary is the point beyond which the cluster software (and the
application harness) cannot go. Therefore beyond this point it must be left to the
application to "do the correct thing".

Application Protection Boundary

� Try to move
boundary into
application by
monitoring

� Can only go so far
without application
support

Operating System Application

Protection Boundary

Protected Unprotected

The diagram shows the protection boundary at the application boundary. This is the
case for hardware based high availability which has no application specific
components at all.

Software based HA can tailor monitors specifically to the application (necessitates a
protection harness for each application) which moves the protection boundary some
way into the application. However, although better it too can only go so far in
monitoring

Case Study: London Stock
Exchange Failure

� On 5 April 2000, The LSE computer system
failed and was taken down for a reboot
� Down time was 8 hours, finally up at 3:45pm

� This is the end of the tax year in Britain

� Actual direct costs (traders fees, savings tax,
transaction fees) estimated in the millions

� Indirect cost (credibility, individual losses) almost
unmeasurable

Everyone in the HA business likely had a friend from the UK comment that "the LSE
could have done with your clustering software". Well, let’s look and see if this is
correct.

Preventing the Disaster

� Could any of the following have prevented
the problem from occurring

� Hardware HA?
� Software HA?
� Shared Storage Clusters?

No

No

No

The lesson is that No failover based system could prevent the Disaster because it was
caused by data contamination

Analyse What Went Wrong

� At 4:30am a database purge program got
bogged down and was still running when
trading began

� Start of day assumed only one record per
share reflecting the current price

� Contamination of the database forced the
LSE to shut down.

Share prices are stored as a "time series", a sequence of time indexed records, the most
current one representing the actual price. Since the purge was still running at start
of day, obsolete price data was mixed with the correct ones. Without reliable data,
no trading could be done and the data stream had to be shut down.

The problem was in the
Application

� The database contained contaminated data
� No amount of switching over or component

protection fixes this

� Could only have prevented this if the protection
boundary was far enough into the application to
detect the problem, but cannot be done without
application help

� Could use Disaster Recovery techniques to
return to uncontaminated data

Once the protection boundary goes beyond monitoring to pro−active failure detection, it
becomes a battle of wits with the application to think of all the possible failure
modes and encode checks for them. Can use computer analysis techniques on
simple applications to check that all error conditions have been thought of. Analysis
tends to be unwieldy for complex applications

Bottom line: person writing the checks must be intimately familiar with the application.
Even so, how do you know they thought of everything.

Disaster recovery is a different breed of High Availability technique. It involves
restoring the application to a known good state.

Checkpoint and Restore

� Periodically dump the state of the application
� On automatic (or Manual) failure detection, if

ordinary recovery fails, restore from
checkpoint

� Restore procedure involves data loss
� Expensive on storage
� Would have limited LSE down time

Checkpoint and restore is simple, can be done with or without application co−operation.
 The down side is that you need at least three times the storage the application
requires (you need at least two rotating checkpoints in case disaster strikes while a
checkpoint is being taken).

Note that checkpointing still cannot guard fully against application error: if the
application itself caused the error (by internal bug, design fault, etc.) unless the
casue is determined and circumvented, the problem will likely recur in the same
circumstances even when restored from the checkpoint.

Disaster Recovery

WAN

Local Cluster Remote Cluster

Transaction Based Replicatior Local Replicator

The remote replicator must be transaction based (i.e. transactions are send in the order
they are committed to the local storage) to ensure replica integrity

Remote cluster has local replicator (may also have this in local cluster). Its job is to
replicate the database to storage. The replica is then broken off and retained as the
checkpoint to be wheeled out again if the application needs to be restored to a
known state.

Disaster Recovery

� Based on Local and Remote Replicators
� Local replicator can be software RAID 1 (mirror)

� Remote replicator comes from e.g. Linux−HA

� Cannot use shared storage (2km limitation)
� Use hybrid approach

� Shared storage for local cluster

� Linux−HA for geographic cluster

Remote replicator usually Asynchronous (WAN latency is too high for synchronous
mode) => a certain number of transactions are committed locally but in flight to the
remote. On a crash, these in−flight transactions are lost.

Local replicator usually synchronous (Bus bandwidth is high enough for this). A good
local replicator can have the mirror broken for backup purposes and bring in either a
fresh volume for complete reply or a previous backup volume for incremental replay

Because of geographic distances, even a SAN won’t reach => cannot use resource as tie
breaker, must use other techniques e.g. VAX quorum.

Conclusions

� Shared storage solves a lot of cluster
problems (quorum, partitioning, replication
delays)

� Shared storage introduces others (2km
length, configuration)

� Failover clusters have inherent weaknesses
in the protection boundary

� No one technique solves all problems, must
combine from each field

