Improving Kernel Performance by Unmapping the Page
Cache

James Bottomley
SteelEye Technology, Inc.
James.Bottomley@ SteelEye.com

Abstract The benefits are that I/O goes straight from
the device into the user space (for processors
that have virtually indexed caches) and the ker-

The current DMA AP is written on the found- N€l has quite a large unmapped area for use in

ing assumption that the coherency is beingMapping highmem pages (for x86).

done between the device and kernel virtual ad-

dresses. We have a different API for coherency

between the kernel and userspace. The upshdt |ntroduction

is that every Process I/O must be flushed twice:

Once to make the user coherent with the .kernelln the Linux kerne! there are two addressing

and once to make the kernel coherent with the] : L .

device. Additionallv. having to man all pages Spaces: memory physical which is the location

' Y, 9 P all PAgEs; he actual memory subsystem and CPU vir-

Eual, which is an address the CPU’s Memory
anagement Unit translates to a mem-

oY Unit (MMU) trans|

ory physical address internally. The Linux ker-

_ _ nel operates completely in CPU virtual space,
We present a different paradigm: Assume thajeeping separate virtual spaces for the kernel
by and large, read/write data is only requiredyng each of the current user processes. How-
by a single entity (the major consumers of Iargeever' the kernel also has to manage the map-
multiply shared mappings are libraries, whichyings hetween physical and virtual spaces, and

are read only) and optimise the I/O path for thisy, (g that it keeps track of where the physical
case. This means that any other shared Co?iages of memory currently are.

sumers of the data (including the kernel) mus

separately map it themselves. The DMA APIIn the Linux kernel, memory is split into zones
would be changed to perform coherence to thén memory physical space:

preferred address space (which could be the

kernel). This is a slight paradigm shift, because * ZONE_DMAA historical region where
now devices that need to peek at the data may ISA DMAable memory is allocated from.
have to map it first. Further, to free up more On x86 this is all memory under 16 MB.
space for this mapping, we would break the as- 1This is not quite true, there are kernels for proces-

sumption that any page in ZONE_NORMAL sors without memory management units, but these are
is automatically mapped into kernel space. very specialised and won't be considered further

on x86 (where any highmem page must be se
arately mapped).

« ZONE_NORMAIThis is where normally The problem, for the kernel, is that it now only
allocated kernel memory goes. Wherehas 1GB of virtual address to play wiithclud-
this zone ends depends on the architecing all memory mapped I/O regions. The re-
ture. However, all memory in this zone sult being thatZ ONE_NORMA&ctually ends
is mapped in kernel space (visible to theat around 850kb on most x86 boxes. Since
kernel). the kernel must also manage the mappings for

every user process (and these mappings must

* ZONE_HIGHMEM his is where the rest pe memory resident), the larger the physical
of the memory goes. It's characteristic is memory of the kernel becomes, the less of
that it is not mapped in kernel space (thuszoNE_NORMAecomes available to the ker-
the kernel cannot access it without firsthe| On a 64GB x86 box, the usable mem-
mapping it). ory becomes minuscule and has lead to the

proposal[2] to use a 4G/4G split and just ac-

11 The x86 and Highmem cept the TLB flushing penalty.

1.2 Non-x86 and Virtual Indexing
The main reason for the existence of

ZONE_HIGHMEMs a_ peculiar _quwk on Most other architectures are rather better im-
the x86 processor which makes it rather ex-

pensive to have different page table mappingglemented and are able to cope easily with sep-

a}rate virtual spaces for the user and the ker-
between the kernel and user space. The root 0 . . .
nel without imposing a performance penalty

the problem is that the x86 can only keep one e .
set of physical to virtual mappings on-hand ransitioning from one virtual address space to
another. However, there are other problems

at once. Since the kernel and the processetﬁe kernel’'s penchant for keeping all memory

occupy different virtual mappings, the TLB o :
context would have to be switched not Onlymapped causes, notably with Virtual Indexing.

when the processor changes current user taskgirtual Indexing[3] (VI) means that the CPU
but also when the current user task calls on theache keeps its data indexed by virtual address
kernel to perform an operation on its behalf.(rather than by physical address like the x86
The time taken to change mappings, calledjoes). The problem this causes is that if multi-
the TLB flushing penalty, contributes to a ple virtual address spaces have the same physi-
degradation in process performance and haga| address mapped, but at different virtual ad-
been measured at around 30%[1]. To avoitjresses then the cache may contain duplicate
this penalty, the Kernel and user spaces shafgntries, called aliases. Managing these aliases

a partitioned virtual address space so thapecomes impossible if there are multiple ones
the kernel is actually mapped into user spacghat become dirty.

(although protected from user access) and vice
versa. Most VI architectures find a solution to the

multiple cache line problem by having a “con-
The upshot of this is that the x86 userspacgruence modulus” meaning that if two virtual
is divided 3GB/1GB with the virtual ad- addresses are equal modulo this congruence
dress range 0x00000000-0xbfffffff (usually a value around 4MB) then the cache
being available for the user process andwill detect the aliasing and keep only a single
0xc0000000-0xffffffff being reserved copy of the data that will be seen by all the vir-
for the kernel. tual addresses.

The problems arise because, although archthe fact that in order to make a device ac-
tectures go to great lengths to make sure akkess to physical memory coherent, any cache
user mappings are congruent, because the kdines that the processor is holding need to be
nel memory is always mapped, it is highly un-flushed/invalidates as part of the DMA trans-
likely that any given kernel page would be con-action. In order to do DMA, a device simply
gruent to a user page. presents a physical address to the system with
a request to read or write. However, if the pro-
cessor indexes the caches virtually, it will have
no idea whether it is caching this physical ad-
dress or not. Therefore, in order to give the
It has already been pointed out[4] thatprocessoranidea of where inthe cache the data
x86 could recover some of its preciousmightbe,the DMA engines on VI architectures
ZONE_NORMAdpace simply by moving page also present a virtual index (called the “coher-
table entries into unmapped highmem spaceence index”) along with the physical address.
However, the penalty of having to map and

unmap the page table entries to modify thenp 1 coherence Indices and DMA
turned out to be unacceptable.

1.3 The solution: UnmappingZONE_NORMAL

The solution, though, remains valid. The Coherence Index is computed by the pro-
There are many pages of data currentlyc€SSoron a per page basis, and is used to iden-
in ZONE_NORMALlthat the kernel doesn't tify the line in the cache belonging to the phys-
ordinarily use. If these could be unmappedical address the DMA is using.

and their virtual address space given up therb il notice that thi " h
the x86 kernel wouldn't be facing quite such a. ne wil notice that this means the coherence

memory crunch. md_ex must be _computed @veryDMA trans-
action for gparticular address space (although,

For VI architectures, the problems stem fromif all the addresses are congruent, one may sim-
having unallocated kernel memory alreadyPly Pick any one). Since, at the time the dma
mapped. If we could keep the majority of ker- mapping is done, the only virtual address the
nel memory unmapped, and map it only wherkernel knows about is the kernel virtual ad-
we really need to use it, then we would standdress, it means that DMA is always done co-
a very good chance of being able to map thderently with the kernel.

memory congruently even in kernel space. In turn, since the kernel address is pretty much

The solution this paper will explore is that of N0t congruent with any user address, before the
keeping the majority of kernel memory un- DMA is signalled as being completed to the

mapped, mapping it only when it is used. user process, the kernel mapping and the user
mappings must likewise be made coherent (us-

ing theflush_dcache_page() function).

However, since the majority of DMA transac-
2 Acloser look at Virtual Indexing tions occur oruserdata in which the kernel has

no interest, the extra flush is simply an unnec-

o _ essary performance penalty.
As well as the aliasing problem, VI architec-

tures also have issues with 1/0O coherency ol his performance penalty would be eliminated
DMA. The essence of the problem stems fromif either we knew that the designated kernel ad-

dress was congruent to all the user addresseswise it may fall victim to stale cache refer-
or we didn't bother to map the DMA region ences that were left over from a prior use.

into kernel space and simply computed the co-))) .

herence index from a given user process. Th&lushing a VIPT cache is easier said than done,

latter would be preferable from a performancesmce in order to flush, a valid translation must
point of view since it eliminates an unneces-€Xist for the virtual address in order for the

sary map and unmap. flush to be effective. This causes particular
problems for pages that were mapped to a user
_ space process, since the address translations
2.2 Other Issues with Non-Congruence are destroyetieforethe page is finally freed.

On the parisc architecture, there is an architec-
tural requirement that we don’t simultaneously3 Kernel Virtual Space
enable multiple read and write translations of

a non-congruent address. We can either enab!<hough the kernel is nominally mapped in

a single write translation or multiple read (butthe same way the user process is (and can the-

no write) translations. With the current manner_ " ° : . .
. o : . _oretically be fragmented in physical space), in
of kernel operation, this is almost impossible o :
fact it is usually offset mapped. This means

to satisfy without going to enormous IenglthSInthere is a simple mathematical relation be-

our page trqnslatlon and fault routines to Worktween the physical and virtual addresses:
around the issues.

Previously, we were able to get away with wirtual = physical + _PAGE_OFFSET
ignoring this restriction because the machine

would only detect it if we allowed multiple \yhere PAGE OFFSETis an architecture

aliases to become Qirty (something Linl_Jx neverdefinecﬁuantityf This type of mapping makes
does). However, in the next generation sysit yery easy to calculate virtual addresses from
tems, this condition will be detected when it physical ones and vice versa without having to

occurs. Thus, addressing it has become critigq 1 | the bother (and CPU time) of having
cal to providing a bootable kernel on these newg |50k them up in the kernel page tables.
machines.

Thus, as well as being a simple performance®-1 Moving away from Offset Mapping
enhancement, removing non-congruence be-

comes vital to keeping the kernel booting onThere’s another wrinkle on some architectures

next generation machines. in that if an interruption occurs, the CPU
turns off virtual addressing to begin process-
23 VIPTvs VIVT ing it. This means that the kernel needs to

save the various registers and turn virtual ad-

dressing back on, all in physical space. If
This topic is covered comprehensively in [3].it's no longer a simple matter of subtracting
However, there is a problem in VIPT caches, PAGE_OFFSETo get the kernel stack for
namely that if we are reusing the virtual ad-the process, then extra time will be consumed
dress in kernel space, we must flush the proin the critical path doing potentially cache cold
cessor’s cache for that page on this re-use otlpage table lookups.

3.2 Keeping track of Mapped pages mapped it is surprising that unmapping it turns
out to be fairly easy. The primary reason for
this is the existence of highmem. Since pages
in ZONE_HIGHMELRre always unmapped and
since they are usually assigned to user pro-
. . cesses, the kernel must proceed on the assump-
able slot congruent with a given address (for VItion that it potentially has to map into its ad-

architectures). All we really require is a sim-
) _— . dress space any page from a user process that

ple mechanism for finding the first free page., .

) : o . it wishes to touch.
virtual address given some specific constraints.
However, since the constraints are architecture
specific, the specifics of this tracking are also4.1 Booting
implemented in architectures (see section 5.2

for details on parisc).

In general, when mapping a page we will ei-
ther require that it goes in the first available
slot (for x86), or that it goes at the first avail-

The kernel has an entire bootmem API whose
sole job is to cope with memory allocations
3.3 Determining Physical address from Virtual \yhjle the system is booting and before paging
and Vice-Versa has been initialised to the point where normal
memory allocations may proceed. On parisc,
In the Linux kernel, the simple macros we simply get the available page ranges from
__pa() and__va() are used to do physical the firmware, map them all and turn them over
to virtual translation. Since we are now filling lock stock and barrel to bootmem.

the mappings in randomly, this is no longer a . .
simple offset calculation. Then, when we’re ready to begin paging, we

simply release all the unallocated bootmem
The kernel does have help for finding thepages for the kernel to use from item_map
virtual address of a given page. There isarray of pages.
an optionalvirtual entry which is turned
on and populated with the page’s currentWe canimplement the unmapping idea simply
virtual address when the architecture deDby covering all our page ranges with an offset
finesWANT_PAGE_VIRTUALThe _ va() map for bootmem, but then unmapping all the
macro can be programmed simply to do thisunreserved pages that bootmem releases to the
|00kup_ mem_majarray.

To find the physical address, the best method i his leaves us with the kernel text and data sec-
probably to look the page up in the kernel pagdions contiguously offset mapped, and all other
table mappings. This is obviously less efficientboot time

than a simple subtraction.

4.2 Pages Coming From User Space

4 Implementing the unmapping of The standard mechanisms for map-
ZONE_NORMAL ping potential highmem pages from
user space for the kernel to see are

It is not surprising, given that the entire kernel 27his global array would be a set of per zone arrays
is designed to operate wWitAONE_NORMAL on NUMA

kmap, kunmap, kmap_atomic and are mapped as they are allocated. Since pages
kmap_atomic_to_page . Simply hijack- in the kernel are allocated with a specified or-
ing them and divorcing their implementation der (the power of two of the number of con-
from CONFIG_HIGHMEN4 sufficient to solve tiguous pages), it becomes possible to cover
all user to kernel problems that arise becauséhem with a TLB entry that is larger than the

of the unmapping oZONE_NORMAL usual page size (as long as the architecture sup-
ports this). Thus, we can take tloeder ar-
4.3 InKernel Problems: Memory Allocation gumentto_ alloc_pages() and work out

the smallest number of TLB entries that we

: _ _need to allocate to cover it.
Since now every free page in the system will

be unmapped, they will have to be mappedmplementation of variable size pages is actu-
before thekernel can use them (pages allo- ally transparent to the system; as far as Linux
cated for use in user space have no need tis concerned, the page table entries it deal with
be mapped additionally in kernel space at al-describe 4k pages. However, we add additional
location time). The engine for doing this is aflags to the pte to tell the software TLB routine
single point in__alloc_pages() which is that actually we'd like to use a larger size TLB
the central routine for allocating every page into access this region.

the system. In the single successful page re-

turn, the page is mapped for the kernel to use if*S @ further optimisation, in the architecture
if GFP_HIGHis not set—this simple test is specific routines that free the boot mem, we can

demap the kernel text and data sections with the
smallest number of TLB entries that will en-
tirely cover each of them.

The unmapping is done in two separate

routines: __ free_pages_ok() for free-
ing bulk pages (accumulations of contiguou
pages) andree_hot_cold_page() for
freeing single pages. Here, since we don't
know the gfp mask the page was allocated
with, we simply check to see if the page isThe system possesses every attribute it now
currently mapped, and unmap it if it is be- needs to implement this. We no-longer map
fore freeing it. There is another side benefitany user pages into kernel space unless the ker-
to this: the routine that transfers all the unre-nel actually needs to touch them. Thus, the
served bootmem to thewem_maparray does pages will have congruent user addresses allo-
this via__free_pages() . Thus, we addi- cated to them in user spabeforewe try to
tionally achieve the unmapping of all the freemap them in kernel space. Thus, all we have
pages in the system after booting with virtuallyto do is track up the free address list in incre-
no additional effort. ments of the congruence modulus until we find
an empty place to map the page congruently.

sufficient to ensure that kernel pages only ar
mapped here.

%5 Achieving The VI architecture
Goal: Fully Congruent Aliasing

4.4 Other Benefits: Variable size pages
5.1 Wrinkles in the I/O Subsystem

Although it wasn't the design of this structure
to provide variable size pages, one of the benThe I/O subsystem is designed to operate with-
efits of this approach is now that the pages thabut mapping pages into the kerralall. This

becomes problematic for VI architectures be-counter, allocating a page from that bucket and
cause we have to know the user virtual addresthen incrementing the counter

to compute the coherence index for the 1/0.

If the page is unmapped in kernel space, we

can no longer make it coherent with the kernel))

mapping and, unfortunately, the informationin® Implementation Details on PA-
the BIO is insufficient to tell us the user virtual RISC

address.

The proposal for solving this is to add an ar-Since the whole thrust of this project was to im-
chitecture defined set of elementsstiouct prove the kernel on PA-RISC (and bring it back
bio_vec and an architecture specific func- into architectural compliance), it is appropriate
tion for populating this (possibly empty) set of to investigate some of the other problems that
elements as the biovec is created. In parisdurned up during the implementation

we need to add an extra unsigned long for

the c_oherence index, which we compute from6_1 Equivalent Mapping

a pointer to the mm and the user virtual ad-

dress. The architecture defined components are

pulled into struct scatterlist by yet The PA architecture has a software TLB mean-
another callout when the request is mapped foing that in Virtual mode, if the CPU accesses
DMA. an address that isn’'t in the CPU’s TLB cache,

it will take a TLB fault so the software routine
can locate the TLB entry (by walking the page
tables) and insert it into the CPU’s TLB. Ob-
viously, this type of interruption must be han-
Since the tracking requirements vary dependdled purely by referencing physical addresses.
ing on architectures: x86 will merely wish to Infact, the PA CPU is designed to have fast and
find the first free pte to p|ace a page into; how-SlOW pathS for faults and interruptions. The fast
ever VI architectures will need to find the first Paths (since they cannot take another interrup-
free pte satisfying the congruence requirementton, i.e. nota TLB miss fault) must all operate
(which vary by architecture), the actual mech-0n physical addresses. To assist with this, the
anism for fmdmg a free pte for the mappmg PA CPU even turns off virtual addressing when

needs to be architecture specific. it takes an interruption.

5.2 Tracking the Mappings inZONE_DMA

On parisc’ all of this can be done in When the CPU turns off virtual address trans-

kmap_kernel() which merely uses lation, it is said to be operating in absolute
rmap|[5] to determine if the page is mappedmode. All address accesses in this mode are
in user space and find the congruent addregahysical. However, all accesses in this mode
if it is. We use a simple hash table basecglso go through the CPU cache (which means
bitmap with one bucket representing the sethat for this particular mode the cache is ac-
of available congruent pages. Thus, finding dually Physically Indexed). Unfortunately, this
page congruent to any given virtual addres§an also set up unwanted aliasing between the
IS the_ S|_mple computation of finding the f'_rSt 3This can all be done locklessly with atomic incre-
set bit in the congruence bucket. To findments, since it doesn't really matter if we get two allo-
an arbitrary page, we keep a global bucketations from the same bucket because of race conditions

physical address and its virtual translation. Thestruct task_struct to the thread info.
fix for this is to obey the architectural definition This is sufficient to perform all the necessary
for “equivalent mapping”. Equivalent mapping register saves in absolute addressing mode.
is defined as virtual and physical addresses be-

ing equal; however, we benefit from the obvi-

ous loophole in that the physical and virtual ad-6.3 Flushing on Page Freeing

dresses don't have to be exactly equal, merely

equal modulo the congruent modulus.
as was documented in secti@f?, we need to

All of this means that when a page is allocatedind a way of flushing a user virtual addresfs

for use by the kernel, we must determine if itter it's translation is gone. Actually, this turns
will ever be used in absolute mode, and make ibut to be quite easy on PARISC. We already
equivalently mapped if it will be. Atthe time of have an area of memory (called the tmpalias
writing, this was simply implemented by mak- space) that we use to copy to priming the user
ing all kernel allocated pages equivalent. How-cache (it is simply a 4MB memory area we dy-
ever, really all that needs to be equivalentlynamically program to map to the page). There-
mapped is fore, as long as we know the user virtual ad-
dress, we can simply flush the page through
the tmpalias space. In order to confound any
attempted kernel use of this page, we reserve
a separate 4MB virtual area that produces a
page fault if referenced, and point the page’s
3. the kernel stacks. virtual ~ address into this when it .emoved
from process mappings (so that any kernel at-
tempt to use the page produces an immediate
fault). Then, when the page is freed, if it's
virtual pointer is within this range, we con-

In the interruption slow path, where we savevert it to a tmpalias address and flush it using
all the registers and transition to virtual mode,the tmpalias mechanism.

there is a point where execution must be

switched (and hence pointers moved from

physical to virtual). Currently, with offset

mapping, this is simply done by and additon7 Results and Conclusion

of _PAGE_OFFSET However, in the new

scheme we cannot do this, nor can we call

the address translation functions when in abThe best result is that on a parisc machine, the
solute mode. Therefore, we had to reorgantotal amount of memory the operational kernel
ise the interruption paths in the PA code sokeeps mapped is around 10MB (although this
that both the physical and virtual address wasilters depending on conditions).

available. Currently parisc uses a control reg-

ister @ocr30) to store the virtual address of The current implementation makes all pages

1. the page tables (pgd, pmd and pte),

2. the task structure and

6.2 Physical to Virtual address Translation

the struct thread_info . We altered all congruent or equivalent, but the allocation rou-
paths to chang@ocr30 to contain the physi- tine containBUG_ON() asserts to detect if we
cal address o$truct thread_info and run out of equivalent addresses. So far, under

also added a physical address pointer to th&irly heavy stress, none of these has tripped.

Although the primary reason for the unmap-
ping was to move parisc back within its archi-
tectural requirements, it also produces a knock
on effect of speeding up I/O by eliminating the
cache flushing from kernel to user space. At
the time of writing, the effects of this were still
unmeasured, but expected to be around 6% or
SO.

As afinal side effect, the flush on free necessity
releases the parisc from a very stringent “flush
the entire cache on process death or exec” re-
qguirement that was producing horrible laten-
cies in the parisc fork/exec. With this code in
place, we see a vast (50%) improvement in the
fork/exec figures.

References

[1] Andrea Arcangeli 3:1 4:4 100HZ
1000HZ comparison with the
HINT benchmark 7 April 2004
http://www.kernel.org/
pub/linux/kernel/people/
andrea/misc/31-44-100-1000/
31-44-100-1000.html

[2] Ingo Molnar [announce, patch]
4G/AG split on x86, 64 GB RAM
(and more) support 8 July 2003
http://marc.theaimsgroup.
com/?t=105770467300001

[3] James E.J. BottomleyUnderstanding
CachingLinux Journal January 2004, Is-
sue 117 p58

[4] Ingo Molnar [patch] simpler ’high-
pte’ design 18 February 2002
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
101406121032371

[5] Rick Van Riel Re: Rmap
code? 22 August 2001 http:

//marc.theaimsgroup.com/?l=
linux-mm&m=99849912207578

